
Chapter 9
Biological Control and Integrated
Pest Management

David Orr

Abstract The manipulation of beneficial organisms remains a very important tool
in integrated pest management programs of insect pests worldwide. This chapter
describes the approaches to using biological control and a historical perspective of
each. Recent developments in genetics, systematics, population dynamics, pesticide
chemistry, and public opinion have led to increased scrutiny and inclusion of ben-
eficial insects into IPM programs. This chapter describes these developments and
the variety of approaches that have been used to implement biological control as a
useful tactic in IPM. It also describes how biological control interacts with other
IPM tactics, and the potential for better integration into IPM programs.

Keywords Beneficial organisms · Importation biocontrol · Augmentation ·
Conservation biocontrol · Predators · Parasitoids

9.1 Introduction

Biological control has been a valuable tactic in pest management programs around
the world for many years, but has undergone a resurgence in recent decades that
parallels the development of IPM as an accepted practice for pest management. This
chapter is not intended to be an exhaustive review of research involving biological
control. Instead, it will try to focus on implementation of biological control practices
in insect pest management programs. It will begin with an overview of the general
concepts and challenges facing the use of beneficial organisms within each of the
general approaches to biological control. A brief historical perspective of biological
control follows. Next, the interaction of biological control with the various elements
of integrated pest management programs is considered. Existing implementation, as
well as potential uses of biological control in IPM are also considered.
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9.2 Approaches to Biological Control

Natural enemies have been utilized in the management of insect pests for centuries.
However, this last 100 years has seen a dramatic increase in their use as well as our
understanding of how they can better be manipulated as part of effective, safe, pest
management systems. Recent advances in molecular systematics are shedding new
light on classification of groups of beneficial insects such as the Hymenoptera (e.g.
Sharkey, 2007), and delivery of this information on the internet makes it quickly and
widely available (e.g. The Tree of Life Web Project at http://tolweb.org). Recent ad-
vances in the study of beneficial organism behavior (e.g. parasitoid foraging: Smid
et al., 2007; van Nouhuys and Kaartinen, 2008) and reproductive biology (e.g. sym-
bionts in parasitoids: Clark, 2007) are revealing surprising complexities in the life
histories of these organisms. Understanding this complexity should lead to potential
new methods for their manipulation.
Despite the long history of utilizing natural enemies, it wasn’t until 1919 that the

term biological control was apparently used for the first time by the late Harry Smith
of the University of California (Smith, 1919). There has been debate regarding the
scope and definition of biological control brought about by technological advances
in the tools available for pest management. (see Nordlund, 1996). In this chapter
I will follow the definition presented by DeBach (1964) as the “study, importa-
tion, augmentation, and conservation of beneficial organisms to regulate population
densities of other organisms”. Biological control efforts conducted with predators
and parasitoids still can be organized under three general approaches: importation,
augmentation and conservation of natural enemies (Debach, 1964; Bellows and
Fisher, 1999). Each of these approaches has been used to varying degrees in in-
tegrated pest management programs (see Fig. 9.1).

Fig. 9.1 Relative frequency of implementation of various biological control practices in IPM

9.2.1 Importation Biological Control

Importation biological control is often referred to as “classical biological control”,
which reflects the historical predominance of this approach to utilizing beneficial
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insects. It usually involves the re-uniting of natural enemies with pests that have
escaped them into a new geographical area. Although the practice of introducing
biocontrol agents from a related host species for the control of native arthropod pests
has been used, in some cases effectively, this approach has been strongly criticized
for its potential non-target impacts (see discussion below, this section).

9.2.1.1 Success Rates

From 1890 through 1960, approximately 2300 species of parasitoids and predators
were introduced in approximately 600 different situations worldwide for suppres-
sion of arthropod pests (Hall et al., 1980). The overall level of establishment of
these natural enemies was calculated to be 34%, with complete suppression of target
pests occurring in 16% of situations, and some level of pest suppression achieved
in an additional 42% of situations (Hall and Ehler, 1979; Hall et al., 1980). These
rates have apparently not increased over the last 100 years (Hall and Ehler, 1979;
Hall et al., 1980), although the percentage of successful projects that are complete
successes has reportedly risen since the 1930’s (Hokkanen, 1985). A more recent
analysis has shown that the percentage of agents that establish is between 20 and
55%, and the percentage of introductions contributing to success falls within the
range 5± 15% (Greathead and Greathead, 1992; Gurr and Wratten, 1999).

9.2.1.2 Economics

Economic assessments of the use of introduced natural enemies are not common,
but have been made for several arthropod pests (Ervin et al., 1983; Voegele, 1989;
Tisdell, 1990; Jetter et al., 1997; Zeddies et al., 2001; Kipkoech et al., 2006). The
most common method of determining the economic benefits of biological control
programs is cost-benefit analysis, which offers a systematic way of determining if
the use of biological control results in a net gain (Headley, 1985; Tisdell, 1990).
Classical biological control programs have produced some of the highest benefit-to-
cost ratios of any pest management approach, exceeding billions of dollars in terms
of total savings (Tisdell, 1990). Several highly successful individual projects have
produced exceptional ratios. For example, a recent introduction program initiated
against the ash whitefly in California resulted in a benefit: cost ratio ranging between
$270:1 and $344:1 (Jetter et al., 1997). Zeddies et al. (2001) estimated the benefit to
cost ratio of biological control targeting the cassava mealybug Phenacoccus mani-
hoti Mat.-Ferr. (Homoptera: Pseudococcidae) in sub-Saharan Africa ranged from
200: to 740:1, depending on the market price used for cassava. Marsden et al. (1980)
reported an average benefit-cost ratio (for the period 1960–2000) of 9.4:1 for three
importation biological control programs conducted by CSIRO Division of Ento-
mology against insect pests in Australia, compared to a 2.5:1 benefit-cost ratio for
non-biological control projects conducted by the agency during the same time pe-
riod. However, these numbers do not reflect the average of all projects that have
been done, i.e. both successful and unsuccessful. Since the success rate of classical
biological control has ranged between 5 and 15% for the last 100 years (Gurr and
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Wratten, 1999), the average cost-benefit ratio of all importation programs combined
is undoubtedly lower than for only the successful programs. Regardless, economic
benefits that are provided by successful classical biological control are enhanced by
the fact that programs are self-sustaining and permanent, so that benefits continue
to accrue annually without additional cost.

9.2.1.3 Non-target impacts

Because importation biological control has historically been targeted primarily to-
wards exotic pest species, it is particularly suited as a pest management tactic for
exotic invasive pests. This approach continues to play an important role in this area.
An example is the recent successful control of glassy-winged sharpshooter in the
South Pacific (Grandgirard et al., 2008). However, because these agents are exotic,
there is the possibility for non-target impacts.
Some controversy had developed over the last two decades regarding these po-

tential non-target impacts (see reviews of this subject by Follett and Duan, 2000;
Bigler et al., 2006; Van Lenteren et al., 2006). Simberloff and Stiling (1996) summa-
rized the controversy and highlighted potential risks such as predation or parasitism
of non-target species, competition with native species, community and ecosystem
effects, and unexpected effects such as loss of species dependent on the target of
biological control efforts. The significance and practical impacts of these potential
non-target impacts has been thoroughly debated in the literature (Simberloff and
Stiling, 1996, 1998; Frank, 1998; also see articles in Follett and Duan, 2000; Bigler
et al., 2006), and conclusions vary depending on individual perspective. Many bi-
ological control scientists view these impacts as a real concern, but primarily as a
problem of the past currently considered and dealt with by existing rules and regula-
tions. They also feel that the benefits provided by importation biological control far
outweigh the few negatives resulting from occasional cases of non-target impacts.
Simberloff and Stiling (1996) argued that the few documented cases of non-target
impacts, compared with the number of natural enemy introductions, may have been
more the result of a lack of monitoring and documentation than a lack of actual
impacts. This suggestion may be supported by the database on non-target effects
of importation and augmentation compiled by Lynch and Thomas (2000). These
authors found that from the relatively few cases where data had been collected in
biocontrol projects, there appeared to be a number of non-target effects, although
these were primarily from very early importation efforts and were mostly relatively
minor.
There is one example of a biological control agent that became a widespread

and well known pest following its release. The ladybeetle Harmonia axyridis Pallas
(Coleoptera: Coccinellidae) was released in North America and Northwest Europe
as a predator of aphid pests (Roy and Wajnberg, 2008; Koch and Galvan, 2008).
However, it has become not only a threat to native biodiversity and possibly eco-
logical services through intra-guild and inter-guild predation, but also a noxious
household pest, and minor agricultural pest (Roy and Wajnberg, 2008; Koch and
Galvan, 2008).
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9.2.1.4 Pest Resistance

Although importation biocontrol has been practiced for more than 100 years,
there has only been one documented case of a target pest developing resistance
to a biological control agent. The introduced larch sawfly, Pristophora erichsonii
(Hartig) (Hymenoptera: Tenthredinidae), improved its defenses against the para-
sitoid Mesoleius tenthredinis Morley (Hymenoptera: Ichneumonidae), after the par-
asitoid was introduced into Canada for suppression of the pest (Messenger and van
den Bosch, 1971; Pschorn-Walcher, 1977). This suggests that importation biological
control is a highly sustainable practice for management of insect pests.

9.2.2 Augmentation Biological Control

Augmentation biological control includes activities in which natural enemy popu-
lations are increased through mass culture, periodic release (either inoculative or
inundative) and colonization, for suppression of native or non-native pests. Aug-
mentation is a practice that has been widely recognized by the general public for
some time in the United States mainly as a result of widespread availability of
arthropod natural enemies such as lady beetles (especially Hippodamia convergens
Guerin-Meneville) and mantids through garden catalogs and nurseries (Cranshaw
et al., 1996). The expansion of the internet in recent years has only increased this
awareness.

9.2.2.1 Scientific Basis of Augmentation

Augmentation biological control has recently been criticized (Collier and van
Steenwyk, 2004) and debated (van Lenteren, 2006; Collier and van Steenwyk, 2004,
2006) in the literature regarding the scientific foundation, efficacy, and cost effective-
ness of its use in pest management. Some of these issues have been discussed in the
past. Several authors have called for developmentof predictivemodels to assist in im-
plementation of augmentation biological control (Huffaker et al., 1977; Stinner, 1977;
King et al., 1985; vanLenteren andWoets, 1988;Ehler, 1990), but this has only rarely
been done (see for example Parrella et al., 1992). Because of the lack of supporting
data formany augmentation approaches, (Parrella et al., 1992) stated that recommen-
dations could not be made regarding rates and application methodologies that pro-
vide predictable results. Poor quality of released natural enemies or incorrect release
rates can lead to unsatisfactory pest suppression and contribute to the unpredictability
of augmentation biological control (Hoy et al., 1991). However great strides have
beenmade recently to improve this situation (see articles in van Lenteren, 2003a).
Several explanations have been offered for the lack of experimental work sup-

porting augmentation.One is certainly the tremendous logistical difficulties involved
in conducting the large-scale, statistically valid, detailed studies that are required
to effectively evaluate natural enemy augmentation (Luck et al., 1988). Another
may be a perceived similarity between augmentative releases and the insecticide
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paradigm that has discouraged research interest in this area (Parrella et al., 1992).
In this regard, augmentation could be considered the least sustainable of the three
types of biological control, because it does require continued external inputs.

9.2.2.2 Implementation of Augmentation

Despite these concerns, as van Lenteren (2006) points out there are numerous ex-
amples of successful implementation of augmentation (Gurr andWratten, 2000; van
Lenteren and Bueno, 2003; Shipp et al., 2007). Van Lenteren (2003b) estimated that
approximately 17.1 million hectares are under some form of augmentation. A sig-
nificant industry has developed that supplies these organisms (van Lenteren, 2003b).
Hunter (1997) reported 142 commercial suppliers and over 130 different species of
beneficial organisms, of which 53 were arthropod predators and 46 were parasitoids.
An annually updated list included in the “Directory of Least Toxic Pest Control
Products” produced by the Bio-Integral Resource Center of Berkeley, California
(www.birc.org) includes natural enemies and the companies that provide them.
These products are focused on the greenhouse market, and only four pest groups
(whiteflies, thrips, spider mites, and aphids) account for 84% of expenditures on
augmentation (van Lenteren, 2003b). The augmentation biological control industry
is supported by a sizeable scientific community (see for example articles in van
Lenteren, 2003a; Enkegaard, 2005; Castañé and Sánchez, 2006).
In addition to larger scale commercial sales, there are a number of state and

farmer operated insectaries (van Lenteren, 2003c). The bulk of these insectaries
apparently rear Trichogramma spp. wasps for release against lepidopteran pests
(Smith, 1996). An intriguing example of widespread use of augmentation comes
from Cuba where trade embargos prevented other pest management tactics from
being practicable (Dent, 2005).

9.2.2.3 Non-Target Impacts

Augmentation biological control often utilizes exotic natural enemy species that
have broad host ranges, and undoubtedly have some effect on populations of non-
target insects. However, augmentation does not face the same scrutiny as importa-
tion biocontrol over these potential non-target impacts. This is at least in part due
to the temporary, non-persistent activity of released natural enemies (Lynch and
Thomas, 2000; van Lenteren et al., 2006).

9.2.3 Conservation Biological Control

Conservation biological control seeks to understand human influences on resident
natural enemies in a system, then manipulate those influences to enhance the abil-
ity of natural enemies to suppress pests. DeBach (1964) considered conservation
biological control to be environmental modification to protect and enhance natu-
ral enemies. These activities range from modification of pesticide use practices to
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manipulation of beneficial insect habitat within an agroecosystem (for reviews, see
Barbosa, 1998; articles prefaced by Pimentel, 2008).

9.2.3.1 Pesticide Use Modification

Probably the most common pest management activity that negatively impacts
beneficial organisms in agroecosystems is pesticide application. As a result, mod-
ifications of pesticide use practices are the most commonly implemented form of
conservation biological control (Ruberson et al., 1998), and have long been con-
sidered an important component of integrated pest management programs (Stern
et al., 1959; DeBach, 1964; Newsom and Brazzel, 1968).
Pesticide use can be modified to favor natural enemies in a variety of ways, in-

cluding treating only when economic thresholds dictate, use of active ingredients
and formulations that are selectively less toxic to natural enemies, use of the lowest
effective rates of pesticides, and temporal and spatial separation of natural enemies
and pesticides (Hull and Beers, 1985; Poehling, 1989; Ruberson et al., 1998).
Decisions regarding pesticide use for insect pests in IPM programs are typically
based on sampling pest populations to determine if they have reached economic
threshold levels (Pedigo, 1989), although some work has been done to incorporate
natural enemy sampling into these pesticide use decisions.

9.2.3.2 Other Approaches to Conservation Biocontrol

A variety of other approaches to conservation biological control have been studied,
and are comparatively complex. These include management of soil, water and crop
residue; modification of cropping patterns; manipulation of non-crop vegetation;
and direct provision of resources to natural enemies (see review by Barbosa, 1998;
articles introduced by Pimentel, 2008). In general, these approaches are aimed at
enhancing the density of resident natural enemy populations or communities to
increase their effectiveness in pest suppression. As highlighted by Ehler (1998)
and Jonsson et al. (2008) many of the management techniques developed for con-
servation biological control (other than pesticide use modification) have been of
academic, rather than practical interest, and are not widely implemented in IPM
programs. However, a considerable amount of research has been conducted in this
area recently and there appears to be great potential for future applications in IPM
programs (Jonsson et al., 2008).
One possible explanation for the low rate of success in importation biological

control compared with establishment rates of introduced natural enemies is the lack
of resources available for enemies in agroecosystems (Gurr and Wratten, 1999).
Provision of these resources through conservation biological control methods has
been suggested as one way to improve the success rate for both importation and
augmentation, an approach referred to as integrated biocontrol (Gurr and Wratten,
1999).
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9.2.3.3 Economics

Unlike importation and augmentation biological control, economic assessments of
conservation biological control programs are not only rare, but uniquely difficult
to conduct (Cullen et al., 2008). These authors, however, suggest an approach for
conducting such an assessment.

9.3 Historical Perspective of Biological Control

The first accounts of predatory insects being used as insect management tools
date back as early as 300 AD when Chinese citrus growers placed paper nests of
ants (Oecophylla smaragdina F.) on trees to protect them from other insects (van
Lenteren, 2005). These early augmentation efforts were apparently helped along by
the conservation biological control practice of aiding inter-tree movement of the ants
by placing bamboo rods as runways or bridges between trees (DeBach, 1974). These
ants reportedly were still available for purchase up to at least the 1970’s (DeBach,
1974).
While the predatory behavior of some insects was recognized long ago and taken

advantage of for pest management, the recognition and utilization of the less ob-
vious parasitic insects did not occur until much later. Parasitism by tachinid flies
was first correctly interpreted in China in the 11th century, while ichneumonoid
parasitism was correctly interpreted in Europe in the 17th century (Cai et al., 2005;
van Lenteren and Godfray, 2005). The difference in time between these two events
was likely the more complex life history of the latter group.
The first deliberate movement of parasitoids from one location to another was

conducted by C.V. Riley, who distributed parasitoids of the weevil Conotrachelus
nenuphar (Herbst) around the state of Missouri in 1870 (Doutt, 1964). The first par-
asitoid successfully moved and established from one continent to another, however,
was Cotesia (=Apanteles) glomeratus (L.), which was shipped from England to the
United States for suppression of Pieris rapae (L.) by the U.S. Dept. of Agriculture in
1883 (Riley, 1885; Riley, 1893). Transcontinental shipment of a predatory arthropod
soon followed with the transport of the predatory mite, Tyroglyphus phylloxerae
Riley &. Plancon, from the United States to France in 1873 for suppression of
the grape phylloxera, Daktulosphaira vitifoliae (Fitch) which it did not suppress
(Fleschner, 1960; Doutt, 1964). While a variety of international movements of in-
sects for pest control occurred in the late 1800s, none of them achieved complete
economic control (Fleschner, 1960).
It is generally accepted that the first case of complete and sustained economic

control of an insect pest by another insect was control of the cottony cushion
scale, Icerya purchasiMaskell, in California during the late 1800s (Fleschner, 1960;
Doutt, 1964; Debach, 1974; van den Bosch et al., 1982). Icerya was introduced
into Californiai in 1869, and by 1886 it threatened to destroy the entire southern
California citrus industry (DeBach, 1974). Two insects, the vedalia beetle, Rodolia
cardinalis Mulsant (Coleoptera: Coccinellidae), and a parasitic fly, Cryptochetum
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iceryae (Williston) (Diptera: Cryptochètidae), were imported to California from
Australia in 1877 and 1888. Within two years, I. purchasi was under complete bio-
logical control throughout the state. Although the vedalia beetle is mostly credited
for controlling the cottony cushion scale, once established, the parasitic fly became
the major control factor of the pest in the coastal areas of the state (Van Driesche
and Bellows, 1996). This classic example is presented in many books dealing with
insect biological control (e.g. DeBach, 1964, 1974; van den Bosch et al., 1982; Van
Driesche and Bellows, 1996), and set the stage for future biological control pro-
grams. Probably because I. purchasi provides suppression of C. iceryae only over
a limited portion of the pests’ range, Greathead (1986) considered the importation
of Encarsia berlesi (Howard) into Italy from USA in 1906 for control of the mul-
berry scale, Pseudaulacaspis pentagona Targioni-Tozzetti to be the first successful
introduction of a parasitoid from one country to another for insect pest control.
Following the success of the cottony cushion scale project, numerous biologi-

cal control efforts ensued worldwide (Clausen, 1978; Luck, 1981; van den Bosch
et al., 1982; Greathead, 1986; Greathead and Greathead, 1992) some of which were
just as successful. Although the primary focus of early efforts in biological control
was importation of natural enemies, other methods of manipulating parasitoids and
predators were also considered. While the concept of mass rearing insects for future
releases was proposed as early as 1826 by Hartig, the first practical attempt towards
augmentation of natural enemies in western Europe was probably made in 1899 by
Decaux who devised a complete management program for apple orchards, includ-
ing releases of field-collected inchneumonid wasps (Biliotti, 1977). The first sus-
tained, large-scale, and successful augmentation biological control project involved
mass-production of the ladybeetle Cryptolaemus montrouzieri Mulsant, targeting
the citrophilus mealybug, Pseudococcus calceolariae Fernald (= gahaniGreen), a
pest of citrus in southern California (Luck and Forster, 2003). Large-scale releases
began in the early 1920’s, and continued for decades, with as many as 40 million
beetles being produced annually. This beetle is still available through commercial
insectaries in both the United States and Europe (van Lenteren, 2003b).
The history of conservation biological control has been one of mainly poten-

tial practices developed by researchers that do not appear to have become widely
adopted (Ehler, 1998). However, organic and sustainable farming systems have tried
to take advantage of these practices to some degree (Altieri et al., 2005).

9.4 Interaction of Biological Control with Other IPM Tactics

In integrated pest management programs, specific tactics often do not act indepen-
dently of one another. This may be especially so for biological control since the
agents of insect biological control such as parasitoids and predators are suscepti-
ble to environmental perturbations such as pesticide applications. This section will
examine how biological control interacts with the various tactics employed in IPM
programs.
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9.4.1 Population Monitoring

Pest population monitoring is a cornerstone of many IPM programs. Pesticide use
decisions for insect pests are typically based on sampling pest populations to de-
termine if they have reached economic threshold levels (Pedigo, 1989), although
some work has been done to incorporate natural enemy sampling into these pes-
ticide use decisions. Sampling for natural enemy populations or their effect on
pests can be used to revise economic thresholds to more accurately determine
the need or timing for pesticide applications within a pest generation (Ostlie and
Pedigo, 1987), or to predict the need for treatment of a future pest generation (Van
Driesche et al., 1994). An example is a sequential sampling plan that takes into
account parasitized H. zea eggs when estimating this pest’s population levels in
tomatoes (Hoffman et al., 1991). Formal revised economic thresholds incorporating
natural enemy numbers are not common in IPM programs. However, consultants
and other pest management professionals probably informally incorporate natural
enemy numbers into decision making more frequently, such as with cotton aphid
management in the mid-Atlantic region of the United States (Orr and Suh, 1999).
However, the use of economic thresholds alone in IPM doesn’t necessarily lead to
natural enemy conservation, if for example a broad-spectrum pesticide is used for
treating pest populations when they exceed threshold levels (Ruberson et al., 1998).
Consideration of natural enemy numbers, as well as careful selection of pesticide
use practices (discussed below) can lead to a more integrated approach to IPM.

9.4.2 Cultural Controls

A variety of cultural practices such as management of cropping patterns, soil, crop
residue, and non-crop vegetation are used in management of insect pests. These
practices in some cases can be manipulated to enhance natural enemies of insect
pests. In general, these approaches are aimed at increasing the density of resident
natural enemy populations or communities to increase their effectiveness in pest
suppression.

9.4.2.1 Habitat Stability

It has long been recognized that perennial cropping systems such as orchards are
more favorable to natural enemies and biological control because of the habitat
stability they provide (DeBach, 1964). Habitat stability can also be provided in
situations where crop cycles overlap throughout the year in a substantial portion
of the landscape so that individual fields are not too far apart for enemies to move
between them (e.g. Mogi and Mayagi, 1990). Although there are several examples
of harvest modification to allow for conservation of beneficials such as alfalfa strip
harvesting (Stern et al., 1976), hay strip-harvesting (Nentwig, 1988), alternate row
pruning (Rose and DeBach, 1992), and relay cropping or intercropping (e.g. Bugg
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et al., 1991; Parajulee and Slosser, 1999), logistical concerns prevent widespread
adoption of these practices (Hokkanen, 1991; Ehler, 1998; Jonsson et al., 2008).

9.4.2.2 Crop Rotation

Crop rotation is a foundation for pest management in some cropping systems, dis-
sociating pest populations from continued food supply from one year to the next.
Although not common, crop rotation can also affect populations of beneficials such
as ground-dwelling rove beetles (Lubke-Al-Hussein and Al-Hussein, 2006). Place-
ment of rotated crops in relation to prevailing wind direction and previous years
crops may influence the ability of parasitoids to locate and colonize the new crop
(Williams et al., 2007)

9.4.2.3 Intercropping

The increased vegetational diversity provided by intercropping was proposed by
Root (1973) as a possible means to reduce pest discovery and retention in crops, and
to enhance natural enemy populations and activity (Root, 1973). Andow (1986, 1988)
reviewed intercropping studies in the literature and noted that pest densities were
reduced in 56% of cases, increased in 16%, and not affected in 28%. Russell (1989)
reviewed natural enemy activity in intercropping studies, and reported increased
pest mortality due to natural enemies in 70% of cases, lowered mortality in 15%,
and no effect in another 15%. The responses of both pest and beneficial insects to
intercropping are not well understood, because the underlying mechanisms at the
behavioral level have not been well studied (Bukovinszky, 2007). An understanding
at this level is important to develop intercropping systems with more predictable
outcomes.

9.4.2.4 Trap Cropping

Trap crops are deployed to intercept dispersing pests before they can enter the main
crop, allowing control measures to take place in a smaller area (Hokkanen, 1991).
Natural enemies invariably follow these pests, and may be affected as well. These
effects may be positive, where natural enemy populations are able to build up on
concentrated pest populations and then move into the main crop (Hokkanen, 1991),
although this does not necessarily lead to increased pest reductions in the main crop
(Tillman, 2006a). The trap crops may also act as a sink for insect pest populations
as a result of increased natural enemy activity (Tillman, 2006b). However, control
measures taken for pests in trap crops have the potential to negate these positive
effects by eliminating natural enemies as well. (Hokkanen, 1991), although this is
not necessarily the case. Barari et al. (2005) found that parasitism of the oilseed rape
(Brassica napus L.) pest Psylliodes chrysocephala (L.) (Coleoptera: Chrysomeli-
dae) by the ichneumon wasp Tersilochus obscurator Aub. was not affected by in-
secticide treatment of a bordering trap crop of turnip rape (Brassica rapa L.). This
was at least in part due to temporal separation of insecticide treatment and peak
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parasitoid activity. Even if control measures are used in traps crops, the main impact
of trap cropping on beneficial insects may be the reduction in pesticide usage in the
main crop resulting in conservation of beneficial insect populations.

9.4.2.5 Cover Cropping

Cover crops are employed in crop production systems for a variety of reasons in-
cluding soil fertility, erosion control, and in some cases, pest management (Mangan
et al., 1995; Teasdale, 1996). In a number of agricultural systems, cover crops
have been shown to disrupt behavior of pest insects and reduce their abundance
(Bugg, 1992; Bugg and Waddington, 1994; Teasdale et al., 2004). It is less clear
how cover crops influence natural enemies, and as a result the pest insects they
attack. For example, clover cover crops have been shown in some studies to enhance
natural enemy populations in cotton (Tillman et al., 2004), while other studies have
found no effect (e.g. Ruberson et al., 1997). Buckwheat (Fagopyrum escalentum
Moench) has been shown to enhance natural enemy activity in crops as diverse as
cabbage and grapes (e.g. English-Loeb et al., 2003; Lee and Heimpel, 2005), but in
very few cases have effects on pest densities been associated with this enhancement
(e.g. Nicholls et al., 2000). When mulched, cover crops can provide microhabitats
favorable to insect natural enemies and increase their numbers (Altieri et al., 1985;
Stinner and House, 1990; Orr et al., 1997). There does not appear to be any study
that links enhancement of natural enemy populations by cover crops with economic
suppression of insect pests.

9.4.2.6 Manipulation of Non-Crop Vegetation

Because cultural control practices may include consideration of non-crop vegeta-
tion, it’s appropriate to outline some considerations of this vegetation by workers in
biological control. Research examining the manipulation of vegetation, or habitat,
within agroecosystems on a variety of scales has come to dominate studies of con-
servation biological control recently (see articles introduced by Jonsson et al., 2008).
The goal is to build populations of beneficial insects to reduce pest populations, and
increase crop yields. There are few studies where all three goals have been met,
but this work appears to hold much promise. In addition to natural control, Gurr and
Wratten (1999) argue that success levels of importation (classical) and augmentative
releases of biological control agents could be increased through habitat manipula-
tion. They suggest that little consideration is given to these enemies beyond their
host range, host/prey consumption rates and climatic requirements. They point out
that poor availability of key ecological resources such as nectar, pollen, moderated
microclimate, or alternative hosts may constrain the ability of enemies to regulate
host populations following their release.
While IPM practitioners have often focused on implementing biological control

on a more local scale, such as an individual field, studies have indicated that land-
scape structure may be quite important in determining the levels of natural control
provided by beneficial insects (Thies and Tscharntke, 1999; Tscharntke et al., 2007).
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Fiedler et al. (2008) suggest that the goals of conservation biological control may
be more easily met by combining multiple ecological service goals. This might be
accomplished by looking for synergies in various activities such as biodiversity con-
servation, ecological restoration, human cultural values, tourism, biological control
and other ecosystem services
The concept of agrobiodiversity (see series of 22 articles in van Rijn, 2007) has

recently been promoted for not only the practical values provided by ecological
services such as biological control and pollination, but also for preserving or en-
hancing biodiversity in agricultural landscapes for its own sake. Likewise, concepts
such as farmscaping (Dufour, 2000) and permaculture (Mason, 2003) have tried to
incorporate similar ideas to enhance ecological values such as natural controls in
agricultural or residential settings.
While there is limited information on how fertilization affects natural ene-

mies, parasitoid activity may be lowered under reduced nitrogen conditions (Fox
et al., 1990; Loader and Damman, 1991; Bentz et al., 1996). However, Chen and
Ruberson (2008) reported that increasing levels of nitrogen fertilization in cotton
in field conditions decreased predation, but did not affect parasitism. Thomson and
Hoffmann (2007) found that even thoughmulches increased populations of both soil
dwelling predators as well as canopy dwelling predators and parasitoid, they had no
effect on pest populations.

9.4.3 Mechanical or Physical Controls

9.4.3.1 Tillage

Tillage is the primary means of disturbance in agroecosystems, and is central to
many agricultural practices such as preparation of seedbeds, incorporation of or-
ganic material and fertilizer, and suppression of weeds and some diseases and in-
sect pests (Gebhardt et al., 1985). Tillage practices can have significant influences
on arthropod populations, including natural enemies, and in turn pest management
(Hammond and Stinner, 1999).
A significant amount of research has been directed toward understanding the

influence of reduced tillage systems on arthropods, including natural enemies. In
some cases, conservation tillage has been shown to increase natural enemy popula-
tions (e.g. Gaylor et al., 1984;McCutcheon et al., 1995;McCutcheon, 2000; Tillman
et al., 2004), while in others they were either not affected (Ruberson et al., 1997;
Gencsoylu and Yalcin, 2004), or reduced (Ruberson et al., 1995).
Much of the work dealing with soil-dwelling insect natural enemies has fo-

cused on carabid beetles (Coleoptera: Carabidae), which are significant general-
ist predators in annual row-crop agricultural systems (Thiele, 1977; Kromp, 1999;
Menalled, 2007). Tillage affects carabid populations through direct mortality from
tillage events, or indirectly through loss of prey resources and changes in microcli-
mate (Hance et al., 1990; Thorbek and Bilde, 2004). Shearin et al. 2007 reported
that entomophagous carabid beetles were more sensitive to tillage than herbivorous
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carabids. While diversity and abundance of carabids appears to be favored by re-
duced tillage (see review by Shearin et al., 2007), there are examples where ento-
mophagous beetles are significantly more abundant in conventional tillage systems
(e.g. Carcamo, 1995; Menalled, 2007).
Interpretation of results of these studies is complicated by the sampling method

employed. Populations of carabids are usually sampled with pitfall traps with trap
catches expressed as activity-density (Thomas et al., 1998). However, there are sig-
nificant constraints to using this method, and care should be taken when design-
ing studies and interpreting results (Thomas et al., 2006). In addition, dispersal
of beetles between experimental plots may mask treatment effects (Thorbek and
Bilde, 2004; Shearin et al., 2007). More work appears to be needed to gain a clearer
understanding of the effects of tillage on ground-dwelling arthropod natural en-
emies. What is less clear, and needs even more work perhaps, is the link between
population changes in enemies from tillage practices and suppression of target insect
pest populations.
Tillage has also been found to affect foliage dwelling arthropod predators (House

and Stinner, 1983; Troxclair and Boethel, 1984; Funderburk et al., 1988; Hammond
and Stinner, 1999; Marti and Olson, 2007) as well as parasitoids (Nilsson, 1985;
Ellis et al., 1988; Runyon et al., 2002; Weaver, 2004; Williams, 2006; Rodriguez
et al., 2006) either directly from soil disturbance, or indirectly by altering weed
communities. This is especially important where natural enemies pupate in soil.
For example, an outbreak of cereal leaf beetle, Oulema melanopus (Coleoptera:
Chrysomelidae), in Canada was linked to a change in tillage practices that killed
parasitoids of the beetle overwintering in the soil (Ellis et al., 1988).
In addition to tillage, other practices used to manage crop residues can affect nat-

ural enemies. Several studies have shown that leaving crop residues behind, in cases
where there is no good pest management (or other) reason to remove them through
tillage or other means, can conserve populations of parasitoids and predators (Joshi
and Sharma, 1989; Mohyuddin, 1991; Shepard et al., 1989).

9.4.3.2 Traps and Barriers

Traps and barriers are frequently employed in IPM programs to either reduce pest
numbers directly or deny them access to crops (Pedigo, 1989). However, there are
cases where they may have side effects on beneficial organisms that may interfere
with pest management.
Semiochemicals, including pheromones and kairomones, are commonly utilized

in host-finding by natural enemies such as parasitoids (see reviews by Vet and
Dicke, 1992; Powell, 1999). They may have potential for manipulating popula-
tions of natural enemies to benefit pest management (e.g. Powell and Pickett, 2003;
Quarles, 2007; Khan et al., 2008). These same semiochemicals in turn can have
non-target impacts on natural enemies when traps employing them are used in IPM
programs (e.g. Franco et al., 2008; Perez and Sierra, 2006).
In mass-trapping efforts or even monitoring with traps such as colored sticky

traps, attraction and effect on natural enemy populations should be considered prior
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to implementation (e.g. Blackmer et al., 2008). Frick and Tallamy (1996) found
that electric traps, using ultraviolet light as an attractant killed almost exclusively
non-target insects, rather than the targeted biting flies, with approximately 13.5% of
the catch predatory and parasitic insects.
Mesh size of insect barriers require testing to determine the size that excludes

pest, but does not also exclude natural enemies that may be attacking other pests in
a cropping system (Hanafi et al., 2007). The use of UV blocking films has potential
for use in IPM programs against insect pests in greenhouse crop production, through
interference with insect visual receptors and behavior (Doukas and Payne, 2007).
However, these films also have the potential to interfere with biological control, and
more studies examining effects on natural enemies should be undertaken (Doukas
and Payne, 2007).
In the 1980’s and 90’s vacuum systems became popularized for management

of insect pests organically, and a few systems are still available for this purpose
(Kuepper and Thomas, 2002). Studies conducted to date have not demonstrated any
negative impact on beneficial insects in crop field treated with the vacuums (Kuepper
and Thomas, 2002).

9.4.4 Plant Breeding and Transgenic Crops

Both biological control and host plant resistance are important components of many
IPM programs.However, these twomethods do not necessarily act on target pests in-
dependently of one another, and IPM practitioners should consider their interactions
when designing management programs (Bottrell et al., 1998). Pest resistant plants
can have a variety of positive and negative influences on natural enemies (see re-
views by Boethel and Eikenbary, 1986; Dicke, 1999; Ode, 2006). Likewise enemies
can contribute to the sustainability of plant resistance by slowing pest adaptation to
resistant plants (Gould et al., 1991; Gould, 1998).

9.4.4.1 Conventional Plant Breeding

Conventionally bred resistant plants affect natural enemies either directly through
chemical or physical plant traits such as trichomes, or indirectly through plant
mediated effects on host or prey characteristics such as quality (Godfray, 1994;
Kennedy, 2003; Ode, 2006). These effects can be either constitutive, or inducible
as a result of herbivore attack (Dicke et al., 2003; Kennedy, 2003; Pieterse and
Dicke, 2007).
Although the interactions between natural enemies and pest-resistant plants have

been studied for decades (see for example Boethel and Eikenbary, 1986), most at-
tention in this field has been focused recently on genetically-modified or transgenic
plants. This is especially timely now, given the expansion of transgenic crops into
areas where they were previously excluded (Pollack, 2008).
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9.4.4.2 Transgenic Plants

Transgenic plants currently deployed act on natural enemies directly, in a manner
similar to antibiosis (Gould, 1998). The majority of studies done to date have not re-
ported profoundly negative effects of transgenic plants on arthropod natural enemies
(Callaghan et al., 2005). Lovei and Arpaia (2005) in reviewing the literature dealing
with laboratory studies of the effects of transgenic plants on arthropod predators and
parasitoids, reported that roughly one third of these studies indicated significantly
negative effects of geneticallymodified plants on life history parameters of predators
(30%) and parasitoid (39.8%). However, they note that there were inadequacies in
the experimental methods used for these studies, including: artificial test conditions
not at all related to those insects would experience under field conditions, small
range of taxa tested, and variability in the types of measured parameters. Romeis
et al. (2006) reviewed laboratory, greenhouse, and field studies that examined ef-
fects of transgenic crops expressing B. thuringiensis toxins on arthropod predators
and parasitoids. They conclude that there were no direct toxic effects, and negative
effects only occurred where Bt susceptible, sublethally damaged herbivores were
used as prey or hosts. Several reviews have concluded that Bt cotton has a minimal
impact on beneficial insect communities in cotton worldwide (Sisterson et al., 2004;
Naranjo, 2005; Whitehouse et al., 2005).
Field studies reviewed by Romeis et al. (2006) indicated that abundance and

activity of predators and parasitoids were similar in Bt and non-Bt crops. Romeis
et al. (2006) suggest that Bt crops have fewer adverse effects on natural enemies
than conventional insecticides, and can reduce insecticide use through incorpora-
tion into IPM programswith strong biological control components. A meta-analysis
conducted by Marvier et al. (2007) reviewed 42 field experiments and found that
non-target invertebrate populations generallyweremore abundant in Bt versus insec-
ticide treated field crops, although some non-target invertebrate populations were
less abundant in Bt versus non-Bt fields not treated with insecticides. A review
of the economic, ecological, food safety and social consequences of transgenic
Bt-expressing plants concluded that the risks of deploying transgenic Bt plants were
lower thanmany current or alternative technologies, and the benefits greater (Shelton
et al., 2002). The same pattern of results seen with Bt transgenic crops has also been
reported for genetically modified crops based on insecticidal proteins other than the
B. thuringiensis delta-endotoxin (Callaghan et al., 2005;Whitehouse et al., 2007).
Deployment of transgenic crops has resulted in lower insecticide use. Over

the nine year period from 1996 through 2004, insecticide use on the genetically
engineered corn and cotton grown in the US dropped by 5% (7.08 million kg)
(Benbrook, 2004). Bt cotton has significantly reduced pesticide inputs wherever it
has been commercially adopted, such as Australia where a 50% reduction was re-
ported in comparison with conventionally sprayed cotton (Whitehouse et al., 2007).
In contrast, from 1996 through 2004, herbicide use on genetically engineered corn,
cotton, and soybeans grown in the US increased by 5% (Benbrook, 2004). However,
the use of transgenic herbicide-tolerant soybeans does not appear to have any sig-
nificant effect on arthropod communities (Buckelew et al., 2001).
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A difficulty with making larger analyses of non-target effects of transgenic plants
has been the variability in experimental approaches. To help make the evaluation
process systematic, Romeis et al. (2008) propose a scientifically rigorous proce-
dure to evaluate the risks of insect-resistant genetically modified crops to non-target
arthropods that provide ecological services such as biological control, pollination,
and decomposition.
The debate over the safety of genetically modified crops is likely to continue

(Thies and Devare, 2007). Despite early concerns over sustainability (e.g. Gould
1998), insect pest management using transgenic crops appears to be working quite
well. Concerns over impacts on non-target beneficial arthropods in transgenic crops
are largely uncorroborated by the data collected to date. By reducing insecticide
applications, the use of transgenic herbivore resistant crop plants likely outweighs
any specific negative effects they may have on natural enemy biology. The primary
means by which conservation biological control of arthropods is implemented is
through the modification of insecticide applications (Ruberson et al., 1998). Rather
than having anticipated negative effects, transgenic varieties appear to have resulted
indirectly in the conservation of beneficial insects in crops in which they are used.

9.4.5 Pesticide Use

Probably the most common pest management activity that negatively impacts bene-
ficial organisms in agroecosystems is pesticide application. Although herbicide use
can influence both pest and natural enemy populations (see for example Shelton and
Edwards, 1983; Taylor et al., 2006), this section will focus on insecticide effects
since they are so much more significant.
Pesticide products used for pest management in agriculture have been changing

so that use of the oldest and most toxic cyclodienes, carbamates and organophos-
phates is slowly decreasing worldwide (Devine and Furlong, 2007). For example, in
the United States between 1992 and 2000, the use of these materials had declined
by 14% (by weight of active ingredient), even though overall agricultural pesticide
use had not declined in that same period (GAO, 2001). However, these materials
still retain a 50% worldwide market share (Devine and Furlong, 2007; Singh and
Walker, 2006). Synthetic pyrethroids, with their vastly improved mammalian and
avian toxicity profiles, now account for 20% of global insecticide sales (Devine and
Furlong, 2007).

9.4.5.1 Side Effects on Natural Enemies

Studies examining the side effect of pesticides on natural enemies have been re-
viewed several times (Haynes, 1988; Croft, 1990; articles in Vogt and Brown, 2006;
Desneux et al., 2007). These side effects are manifested in several different ways.
Indirect effects include habitat destruction, and damage to nesting, oviposition, rest-
ing, and mating sites (Desneux et al., 2007). Direct lethal effects of insecticides are
the most well known and have typically been estimated by determining a median
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lethal dose (LD50) or median lethal concentration (LC50) that enemies are di-
rectly exposed to. Sublethal effects of insecticides on beneficial arthropods include
deleterious side effects of direct pesticide exposure on physiology and behavior
(Desneux et al., 2007). The physiological effects extend to general biochemistry and
neurophysiology, development, adult longevity, fecundity, sex ratio and immunol-
ogy, while behavioral effects extend to mobility, navigation/orientation, feeding be-
havior, oviposition behavior, and learning performance (Desneux et al., 2007). In
addition to direct lethal and sublethal effects, insecticides may also lead to pest pop-
ulation resurgence, often attributed to the removal of a target pests natural enemies
by the application of broad-spectrum insecticides (Hardin et al., 1995).
Taking sublethal effects of pesticides into consideration when choosing pesti-

cides for an IPM program can result in great improvements in natural enemy per-
formance (e.g. Desneux et al., 2005). In some cases, sublethal doses of pesticides
have been shown to have favorable effects on arthropod physiology and/or behavior,
a phenomenon known as hormoligosis (Luckey, 1968). Although hormoligosis has
been reported in a beneficial arthropod, the predatory mite Amblyseius victoriensis
(Womersley), this phenomenon appears very uncommon for natural enemies and
likely of little widespread value in the integration of chemical and biological con-
trols (James, 1997).

9.4.5.2 Modification of Pesticide Use Practices

Because of the widespread use of pesticides in agricultural systems, it follows that
modifications of pesticide use practices are probably the most commonly imple-
mented form of conservation biological control. This approach has long been con-
sidered an important component of integrated pest management programs (Stern
et al., 1959; DeBach, 1964; Newsom and Brazzel, 1968). The use of pesticides can
be modified in a variety of ways to minimize their impact on natural enemies. These
include treating only when economic thresholds dictate, use of active ingredients
and formulations that are selectively less toxic to natural enemies, use of the lowest
effective rates of pesticides, and temporal and spatial separation of natural enemies
and pesticides (Hull and Beers, 1985; Poehling, 1989; Ruberson et al., 1998).While
the concepts behind modifying pesticide use are relatively straightforward, imple-
menting these modifications is not necessarily straightforward. One obstacle is that
the primary source of information regarding IPM is probably extension services, yet
at least in the United States, there are a variety of competing sources from which
growers can get information regarding pesticide use (Rajotte et al., 1987).
The practice of IPM has been shown under large-scale field conditions to be

favorable to beneficial insects. Furlong et al. (2004) determined the impact of IPM
practices at different farms on beneficial insects in Brassica crops in the Lockyer
valley, Australia. Their study clearly demonstrated increased natural enemy abun-
dance and diversity, as well as significantly greater predator and parasitoid effi-
cacy at farms practicing IPM compared with farms that frequently treated with
insecticide.
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9.4.5.3 Reduced Risk Pesticides

Newer insecticide classes have been introduced over the last 15 years in response
to increasing environmental concerns and more difficult registration processes.
These “reduced-risk pesticides”, including insect growth regulators, neonicotinoids,
antibiotics, and oxadiazines are considered by the US Environmental Protection
Agency (EPA) to be safer for human health and the environment than older pes-
ticides. Their low mammalian toxicity allows for a shorter pre-harvest interval, and
most are less likely to harm natural enemies and other non-targets making them
more compatible with IPM programs. A definition has been provided for these ma-
terials and a procedure established to facilitate their registration in the United States
(EPA, 1997). This definition includes the following characteristics: “not harmful to
beneficial insects, highly selective pest impacts”. Studies have demonstrated these
compounds are less harmful to natural enemies than organophosphates, carbamate
and pyrethroid insecticides (Balazs et al., 1997; Dhadialla et al., 1998; Pekar, 1999;
Hewa-Kapuge et al., 2003; Hill and Foster, 2003; Studebaker and Kring, 2003;
Williams et al., 2003a; Thomas and Mangan, 2005; Arthurs et al., 2007). How-
ever, some toxic effects on beneficial arthropods have been reported from expo-
sure to reduced-risk insecticides such as imidacloprid and thiamethoxam (Williams
et al., 2003a; Nasreen et al., 2004; Richter, 2006), indoxacarb (Haseeb et al., 2004;
Galvan et al., 2006), and spinosad (Suh et al., 2000; Nowak et al., 2001; Cisneros
et al., 2002; Schneider et al., 2003; Williams et al., 2003b; Wang et al., 2005). Al-
though these reduced risk pesticides have a number of advantages over older pes-
ticides, their use does not necessarily lead to natural enemy conservation. Sarvary
et al. (2007) concluded that the use of reduced risk insecticides in individual crop
fields within an agricultural landscape did not result in increased natural enemy
activity in those fields, even when suitable natural habitat was interspersed with
cropland.

9.4.5.4 Selectivity

The use of selective pesticides is perhaps the most powerful tool by which pesticide
use decisions can be modified to favor natural enemies (Hull and Beers, 1985), and
the one most readily available to growers (Ruberson et al., 1998). Selecting the best
insecticides for pest management that have minimal impacts on beneficials can be
challenging. To assist in this effort, a variety of databases and ranking systems have
been developed which incorporate insecticide toxicities to non-target species and
other information such as human toxicity and environmental contamination poten-
tial (van der Werf, 1996). These systems can be used to compare relative impacts
of different pesticides on non-target organisms and to estimate probable effects on
non-target environments (Reus and Leendertse, 2000). However, they have rarely
been used to consider insecticide impacts on predators and parasitoids in the crop
environment at a landscape level (Ferraro et al., 2003). In an effort to make this
process more user friendly a beneficial disruption index (BDI) was developed by
Hoque et al. (2002) to provide a generalized measure of insecticide impacts on
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beneficial arthropods in Australian cotton crops. This index was tested by Mans-
field et al. (2006), who concluded that the BDI is an effective measure of insecticide
impacts on beneficial insects in Australian cotton crops.
Pesticide exposure of natural enemies may also be reduced by applying materials

only where they are needed within crop fields. Coll (2004) reviewed the future po-
tential for reducing the negative impacts of pesticide use on natural enemies through
the use of precision agriculture technologies.

9.4.5.5 Resistant Natural Enemies

Efforts have been made over the last several decades to develop natural enemies
that are pesticide-resistant with the goal of better integration of chemical and bi-
ological control (Beckendorf, 1985; Croft, 1990). Genetically manipulated arthro-
pod natural enemies have been used only a few times in IPM programs (Havron
et al., 1995; Hoy, 1996). Only one transgenic arthropod natural enemy has been
released on an experimental basis (i.e. with only a molecular marker), a transgenic
strain of the predatory mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytosei-
idae) (McDermott and Hoy, 1997). While this approach may have potential for im-
proving resistance to pesticides, as well as other traits of natural enemies, a variety
of scientific, regulatory, and political issues remain to be resolved before trans-
genic arthropod natural enemies can be used in practical pest management programs
(Ashburner et al., 1998; Hoy, 2000, 2005).Meanwhile, traditional selective breeding
programs attempting to develop pesticide resistant strains of beneficial insects con-
tinue to be explored (e.g. Devi et al., 2006; Ingle et al., 2007). While some authors
have advocated the use of resistant beneficial insects in IPM programs (e.g. Graves
et al., 1999), it could be argued that this approach is counterproductive to the goals
of IPM because it could encourage more pesticide use as with herbicide resistant
soybean cultivars.

9.4.5.6 Market Demands

Consumers are becoming a driving force in determining pest management practices,
with retailers increasingly requesting horticultural or agricultural practice standards
from farmers (Warner, 2006; Dent, 2005). Public opinions on pesticides have be-
come polarized, with measures such as organic agricultural production gaining pop-
ularity. Global sales of organic produce are rising approximately 20% per year,
with 97% of that market in North America and Europe (Davidson, 2005). However,
approximately 70% of organic production occurs outside of North America and
Europe, primarily in Oceania and Latin America (Davidson, 2005), meaning the
effects of this organic demand will not be restricted to western countries. However,
organic production still only represents a small fraction of total agricultural sales
(Kiplinger, 2007; Willer and Yussefi, 2006), which means that synthetic pesticides
can be used on the vast majority of agricultural production, and remain a critical
component of IPM programs worldwide.
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9.5 Conclusions

The use of biological control in pest management systems has had a long, rich his-
tory. While there are a variety of impediments, there also exist many opportunities
for the continued use and expanded role of natural enemies in the management
of insect pest problems. Changes in pest management tactics are resulting from
a variety of factors, including environmental and human safety concerns, devel-
opment of insecticide-resistance, increases in pesticide cost and availability, and
market demand. However, pesticides will likely remain a major component of IPM
programs into the foreseeable future. Modification of pesticide use practices will
also probably remain the most commonly implemented form of biological control
in agricultural IPM. The continual influx of alien arthropod species resulting from
increased international trade presents new pests of agriculture annually (see review
by Roll et al., 2007). This influx also ensures that importation biological control
will continue to play an important role in IPM practices. As the scientific foundation
of augmentation biological control develops, so too should its implementation. As
IPM evolves to more ecologically based practices (Koul and Cuperus, 2007), the
biological control practice that probably has the greatest opportunity for expanded
use is conservation biological control involving agroecosystem modification.
Agriculture as a whole is facing a variety of challenging changes. Global climate

change is beginning to affect agricultural systems worldwide, and biological con-
trol practices may have to altered to adapt to these changes (Stacey, 2003; Hance
et al., 2007). Recent losses of conservation land and changing markets resulting
from crop-based biofuels (Streitfeld, 2008), increased use of genetically modified
crops (Pollack, 2008), and rising demand for organic produce (Davidson, 2005)
make it clear that market forces are a major and sometimes unexpected driving force
in agricultural production. Regardless of the production system, IPM will have an
important role to play, and the use of biological controls can be an integral part
of IPM.
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